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Abstract

Starting with a general dispersion equation, the
expression aw/aK for the group velocity, and the refraction
laws of Sommerfeld-Runge and Poeverlein, Hamilton's equationms
for ray tracing and group speed are deduced here in vector
notation (the consequent use of which simplifies also the
introduction of curvilinear coordinates). Some particular'
forms of the dispersion equation are discussed, especially
for electromagnetic waves in an incompressible plasma pervaded

by a magnetic field.



1. Dispersion equation

Since the pioneering paper of Haselgrove [1955] about ray tracing
in anisotropic media this has become an important tool for the theoretical
explanation of measurements where the propagation of electromagnetic waves
in the ionospheric or magnetospheric plasma is involved and the influence
of the earth's magnetic field B is important. The latter causes the
anisotropy of the plasma resulting in a complicated form of the dispersion

equation
F(k,u37,t) =0 . (1)

For an incompressible ('"cold") plasma this dispersion equation

can be written as a quadratic equation in k2 EStix 1962]

Ak - B(-é“’—)2 K2+ (—Cﬂ’—)" c=0 . (2)
[e] (o]

The coefficients A , B , C comprise the three eigenvalues és (s = -1,

0,+1) of the effective dielectric temnsor

H_
5 - i U = unit tensor
eze U+ % ° -
° 0 = conductivity tensor
viz.
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and the angle © between the propagatioh vector k and the earth's magnetic

field B :

"
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The eigenvalues és (3) and their linear combinations

v
€4

1 ,v v
7 (Eqp £ E9)

depend on the wave frequency w/2m and on ;,t via the densities Nc ’

the collision frequencies v_, and ]ﬁ

. Hence A, B, C are functions
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For wave pulsations w very large in comparison with the
gyro pulsations qy B/miCOVeouo of the ions the electrons alone

need to be considered. With the standard notation



% = X . e Né/eomew
T 14+iZ T I+iv, /w
S Y Iqe|B/meCo Eouow

T4z - +Hv_/w

the coefficients A, B, C can be written

AL -%2) =1 <% - ¥ + %92 cos2e
B(1 - ¥%) = 2(1 - 0% = (2 - DT + R¥? cos?s (6)
ca-%=a-553-a-ni?

and the solution of the dispersion equation (2) is the well-known

dispersion formula of Appleton [i92€]and Lassen [iQZﬂ .

The taking into account of the collision frequencies Vo gives
rise to complex coefficients(S) in the dispersion equation (2). By
separating its real and imaginary parts we obtain two coupled equations
for the (real) propagation vector Re k and the absorption vector Im K .
For their solution we have to prescribe both the directions of Re k
and of Im K . (They coincide only for vertical incidence of waves

into a "stratified" ionosphere.) This makes



Re T + 1 2 A .
cos 6 = e k+ i Im .3 4
/kRe ﬁ)z - (Im K)z + 2i Re ? « Im ﬁ
in general complex and thus complicates considerably all calculations.
Only with
-> -
[Im k| << |Re k| for weak absorption (7N

we may régard

Vv |=v

-

) .
cos © Re . ﬁ [4i
Re -

as (nearly) real and

- -

0 =Re F(Re k + i Im ﬁ, w;r,t) ¥ Re F(Re ﬁ, wir,t) |1
as the dispersion equation to be solved for a given direction of Re k.

For the sake of simplicity we neglect the absorption completely
in the following. Weak absorption (7) can be taken into account by

writing Re F and Re k instead of F and k in the finite results.

2. Hamilton's equations

For the calculation of group propagation we start with the well-

known expression

(8)

2 e

dt



for the group velocity. Since the dispersion equation (1) gives only

~

a connection between ®w and k and requires a given k we need further
equations for the determination of k during the group travel. These
are given by the refraction law of Sommerfeld and Runge [191f§ and its

four-dimensional generalization by Poeverlein [1962] :
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Together with the dispersion equation (1) the equations (8) (9) suffice
for the caluclation of the group propagation. But they are rather unhandy
for an actual computation and therefore we will transform them into a

more convenient form.
For this we differentiate the dispersion equation

F(E,w;?,t) =

H N
l—

>
totally with respect to r :



and with Poeverlein's law (9) we obtain

- > “
3F . 3F . 9 > 3k 3F OF OF (a AF/0k 5\ o
Q=—4 —* — Kk o — — & — - = —_—.-—\ k . (10)
3; BK 3 3t Jw a+ ow at aF /3w 3;/

Total differentiation of the dispersion equation (1) with respect to k

yields
dF aF dw OF
0 =— =2 — 4 — —
ak ok sk ¢
and hence with Eq. (8) the expression
dr 3F /oF
r e — —
at © " 7 /e 1)

for the group velocity. We now recognize the parenthesis in Eq. (10)

as the "mobile operator"

d _ 2  dr, 3
dt ~ ot = dt >
or

describing the total temporal variation at a point traveling with

dr/dt. Therefore Eq. (10) can be written

dk 3F  OF
it - > 3a . (12)
or

In a completely analogous manner the total temporal differ-

entiation of the dispersion equation (1) leads to



oF ~ 9
d E - 2F (13)

dt 3, ow

The three equations

> ->
dr 9F /3F dk _3F [OF dw JF /3F 31 197 qa
dt = ap /w0 dt o o2 //am JEr T at//aw 1112113

together with the dispersion equation (1) - are now sufficient for the
calculation of the group propagation. Since they have the same denominator
we can write them in a more symmetrical form by introducing a differential

parameter dt1 which describes the propagation along the group path (ray):

ar OF i oF

r .

—_— = = _ = . — (143)
dr 3% dr 3T

e _ _3F dw _ 3F

dr oW dr 3t (14b)

The vector equations (l4a) are Hamilton's equations for
geometrical optics, the two scalar equations (14b) their fﬁur-dimensional
generalizations {Synge 1954] . The parameter dt depends on the parti-
cular form of the dispersion equation (1). Its elimination leads back
to the equations (11) (12) (13); but for a numerical solution of the

equations (14) it is preferable to retain dr

For physical interpretations it is sometimes useful to have the

group path element



ds = Jdr - dF

as a differential parameter instead of the merely mathematical quantity drt .
From the first vectorial Hamilton equation (14a) we obtain by scalar

multiplication with itself immediately

g\ E (15)
ok
which we can use to replace dt by ds .
3. Particular forms of Hamilton's equations
As was pointed out by Synge [19541 we may use as dispersion
equation
> > -
F(k,w;r,t) =0 Ll]
not only an equation of the form
’ 2 ‘\4 ~
K AT, - K \-ci\, B(w;T,t) + == ! C(w3T,t) =0 [2]
O// \ 0'

but also any solution of it written in a proper form. In the following

we will discuss three particular examples.

If we have a solution of the form w = m(i;;,t) we can write

a new dispersion equation (after multiplication with Planck's constant +r)



L (fk;T,t) = E - H(p;r,t) = 0

put this into the general Hamilton equations (14) obtaining dt/dTH = fr

and
> -
dr _3H dp _ _3H dE _ 34
dt 52 » dt > * dt 3t
P or

These are Hamilton's canonical equations in analytical mechanics, Z.e.

the equations for the group propagation of matter waves.
With any of the two solutions
Pty o2 B[z hogAC
+ yWi T, c 2A +V - 9
. o B
of Eq. (2) we can write a dispersion equation

Fay
F = k- k(k,w;r,t) = 0 (16)

and find from the first scalar Hamilton equation (14b) together with (8)

I\
dw 5w > >
dt, =+ dt =k = dt = k * dr

This is the longitudinal component of the group path element dr y L€

its projection upon the wave normal k.

5 4 |
Dividing F, = 0 (16) by k(k,w;r,t) we obtain the dispersion

k
equation used by Haselgrove [}955]v:
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G-1: 3 . = k - 1=0
k(k,w;r,t) k(k,w;r,t)
which yields
d =k g =k . odr
Te-1 " *a 9t = r

4. Coupled vector equation

The second vectorial Hamilton equation (14a) describes the
variation of x along the ray. Instead of this it is often advantageous
to have an equation for the variation of the direction % alone, because
after its solution we can determine the absolute value k by means of

the dispersion formula

k = k(ﬁ,w;;,t) . ' . L16]

>
Therefore we can decompose the variation of k into the variations of

>
k and k .

Doing this in the differential operator 3/31 of the first

Hamilton equation (l4a) we obtain

2
3k

=

Tk @2y . (17)

2 |
20 |
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The first (longitundinal) term acts only upon k , the second (transversal)
one only upon k. (The decomposition (17) can easily be verified by

expanding the double vector product.) 1In our gyrotropic plasma k

appears in the function F(k,ﬁ,w) only in the combination

> s .
k + B L 4

cos O

Eee Eq. (5)] and we have

Al TN ~ -> ->
—KX(EX%)F=-‘EX"§X%'E> 3F+
ok N ko k 3(k *+ B)

~ ~ N
ji \ oF B -k cos 8 oF (18)
k,/ 3 cos 6 k 9 cos O

With Egs. (17) (18) the first Hamilton equation (l4a) is written

> > 3
dr 173 ,B-kcos 6 0 2
dt _i_k ak T k 3 cos 6 ] F(k,cos 6,u;r,t) (19)

Putting ¥ = k k into the second Hamilton equation (l4a) we

obtain

3
dk - dk oF
k dt +k dt >
ar

To eliminate dk/dt we mﬁltiply this equation scalarly with k getting (with

>

E.di=0)
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and hence

or
A\
dk 3F . >3 OF
ka"=-—~_—; +kk'—_> (20)
ar or

~

The solution ﬁ(w;T(z)) of Eq. (20) gives us the wave normal

along the ray T(;), i.e. the phase path. With this we solve Eq. (19)

for the ray itself.

with the

of phase

element

with Eq.

Dividing

Thus the coupled vector equations (19) (20) together
dispersion formula (15) form a complete set for the determination

path and group path (ray).

To replace the mathematical parameter dtr by the group path
ds we use
ds = SF 15
dt o LT
(19) and obtain
ds [ [eF\? N sin’e (¥ 2 (21)
dr 8k} k2 \3 cos 8

eqs. (19) (20) by eq. (21) we obtain coupled vector equations

for the unit vector dr/ds and dk/ds. Dividing Eq. (14b) by ds/dt’

we get an equation for the reciprocal group speed
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dt _ _dr aF
ds = T ds 3w ° (222)

Integration along the ray path yields the group travel time

s
) 3F _ dt 3F
t-t = - [ dat e = J ds s Ba (22b)
T s
0 o

5. The coefficients in the first Hamilton equation for gyrotropic incom-

pressible plasma.

The coefficients

3F g + _9F
3k ™% % 3 cos ©

on the right-hand side of the first Hamilton equation (19), which enter also

the expression (21) for ds/dt, can easily be calculated from the dispersion

equation

BN
k”A—kz(?Q)ZB+-’ ) c=09 [2]

L
(T
o) (o]

-+ -
F(k,w; r,t)

with the coefficients A, B, C given by Egs. (5) or (6). Since F is

gquadratic in k? we have

%

2
(+/discriminant of F ) = 2k,(T%) (/B - 4aC)
\ O/

which can be written as [Stix 1962]
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. v
3 \\2 € € -
._F = 2k+ ..@..; o 2 cos 6 +_1.+J_. (23)
Bki = '\C 2
o] € 4
o
with
i -
°© - ~ (-5 X (23a)
e 2 1-Y2
o]
and
- 2 cos © eos_ kfz cos &8 1-X (23b)
sin? 9 € .E - € E sin?8 f

The correspondence of the *-signs in (23) is conventional in ionospheric
VAR
physics, c¢f. Eq. (27b) below. The approximate forms of €€ and [ are

valid if only electrons (and no ions) are taken into account.

We write the second coefficient in a similar manner:

2 o \)2 z
1 oF - 2K :i;} ®o°- 2 cos?® 45k 8
"k 9 cos 9 o eg sin?6 z
(24)
with
. v o

2 cos 6 Eoe- 2 cos O 1—i
8§ = 7 » ~ — (24a)

sin?9 EO(E+ - eo) sin%0

The normalization relation (21) for the introduction of the group

path element ds is written with Eqs. (23) (24)
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//ds“ fu)\f e_ -2 cos 8 ’,/ - '/;;Tfiu B é
-_— = I ) a2 +z2+ cot?8 1- | —k; %‘
dr , c0 ei z - v "
(25)

Therefore the first Hamilton equation

A

¥

dr 309 B-k R
€L = g &£ 4 2= co £ [19]
dt ok k 9 cos O

can now be written with Eqs. (23) (24) and (25) as an equation for the unit

>
vector dr/ds:

A > . 2 -
,—= & 'k cos 6~ B Toe, Vg
i\/’l+C2 k + —— cotel—-—kt' 3
'/d; : sind
= = / T = (26)
2 2 - R R <
t 1 4+ § + cot<hd - — kg <
N 8
The vector
~ A A A N
> > > >
k cos 8§ — B k x (k x B)
= T~ 3 ~
lsin 6] K x (k x B) | (262)

.

. >
is a transversal unit vector (perpendicular to the wave normal k).
6. Discussion of limiting cases
For the (numerical) integration of the second Hamilton equation

-
dk dt aF : ~ [14a)
ds ds 3r
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or the equivalent equation

=~
7/

de | 1 dr f3F g, 3 [20]
> >
ds k ds ar ar
and of
dt _ dr JF .
s~ T ds o (22a]

for the group travel time some limiting values need special comsideration:

a) €, >0 for 6 # 0 and €41

b) € >0 for B8 #0

+ 0 for arbitrary 6

) . E+1 !
c) 8 >0 for €, #0 and €_= -———fzgz—- #0
d) 8 >0 and Zo > 0 or é_ - 0.
a) The vanishing of one eigenvalue
2 v
) qCNC/ma
e, Zoe, - ) (s =0,*1) [3]
cw+iv +sq B/ m ¢ Ve
c c c o oo

causes the vanishing of one of the two roots ki of the dispersion equation
(2) (5). With some straightforward calculations we obtain the following
limiting values [Rawer - Suchy, 1966 a] for s6 # 0:

€ €
lim z =g 28988 g 5. g 26088 o -s (27a)

¢ -0 sin?e € =0 sin?8 € (26 - ¢€ )
s s 0 "o -5




2
. k+
lim =
e 0 € /e
o o o

With this we find from Eq.

(dS/dT)+
lim ———
€t 0 V€ /e
0 o' "o
(ds/dT)
lim m_——
€410 /Eil/eo

~-17~

rwN? 1 k2 w 2 2
— ~ lim — = — - (27b)
¢ sin“se eiI*O Eil/so <, 1 + cos<#
(25)
3 & €
w
c g 2 sin?9
o o
4. . . .
. (:i.? €5 e;l , 1 + 3cos<8 (28b)
‘e g2 2(1 + cos?9)
o o

It is therefore advantageous to write in the vicinity of a zero of k the

integration parameter dt

dr

By choosing the intervals

the two factors

= F
ds ES/EO

24

as follows:

,'/' v "
ds ' dr -

ds/ (29)

v
[
=1
[

(o]

ds for the integration proportional to /Es/eo

£
ds s T
—— and | -
/'~
JE e Je ds
s' 7o )

remain finite. At the point k = 0 itself

k

dﬁs--@-@-n.é{-) [20]
ar ar
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is infinite, k changes through 180°. The limiting values for d;/ds are

from Eq. (26)
sdr Ic; Beoss > dr 2 + Beost
lim ‘4£5%- k= Beosd  § gy (dr o KL Bcoss (30)
€ >0 ds 3 sinf 511+O vds Y1 + 3cos®
Because k¥ and thus © changes through 180° so does d;/ds, which means

total reflection.

The particular case Eo»-o <0 1is treated in d) below.
b) . If E_ vanishes for finite 6 then
% e
r = 2cosb o_- [23b]
in2¢ &, € . - £ ¢
sin +15-1 o +
vanishes, k remains finite, and we obtain from Eqs. (25) and (26) together
with Eq. (24a) for ¢
v ~ v o 2 —1‘2
. PN 2 £, (e, - €) c . €
lim | gi b= 3 2k+ﬂﬁL> sin2p ——F—9 1 + cot2e 1- EQ k, EQ-
‘é'-_’o . AT /t '\co. . 5(2) . 7 +1.
(31a)
~ /—; : ,/C 2 € "x';
t icr k cos® = B gz:g -3 cotf il- (\—f k, __éo :
AP . _ +1-
. dr
lim | —; ;= = c ‘\—Z——E—_z- (31b)
M4 R o | ‘ \
€70 : »/1 + cot20 |1 < — k, c—"—-}
i | w K E+1_.l

We have no zero of ds/drt

allow a simple geometrical

and the limiting values for (dr/ds), do not

representation. Physically the crossing over
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¢ = 0 means an alternation in the sense of rotation of the transversal polariza-
gion (J_K) through linear polarization into the opposite sense of rotation
[stix, 1962]. [For Eo = 0 the value ¢ = 0 1is not crossed over but only
touched, because of the total reflection at ¢ = 0, see case a) above.]

The disappearance of E_ in a plasma is only possible if at least two differ-
ent species of ions are taken into account, see Eq. 3).

c) The vanishing of sin8 causes

2cos9 EOE_ 2cosh 1-X
=~ . [23b]

sinZe £, € -t € sin? Y

el
1
)

~
to increase of second order to infinity as long as €5 and €_ remain finite.

Therefore we write (ds/dT)t) Eq. (25), and (d;/ds)i) Eq. (26), as follows:

[PPSR

2 AV Ve . —
7 _ . € E_ 2 s
—43\, o T oL 22T c0st sign (Re D) 1+ =+ 258 g G
~dt/, £ e 2 2 r2 LW
o .
(32a)
N - ] . 2 .
/ N Kcose - B ! Co T
. £/1 +1¢2 sin?6 k + ——==——— sinfcosH1- —k,
d+‘. sinbd _ N )
S —_ (32b)
-.\dS e < 2 £~?2

/ TR
£./(1 + ¢2) sin*® + sin®0cos?e |1-(—%, <

The limiting values can now easily be obtained with Egs. (23b) and (24a) for

r and & and Eq. (26a) for the unit vector (Kcose - ﬁ)/lsin6|:

Vo
d < w2 ot
lim — = + 2k+":r'ﬁ —7~ 2 sign (Re ©T) (33a)

60 dr -, T %/ 0
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">
lim (/%l }
80 ~as

In this case we have again no zero in ds/drt.

us to a simple limiting value for d;/ds.

d) If sin®  and éo or E_ vanish simultaneously the corresponding

limiting value of

N
€ €
2cos o -

~ >
= K, fe. E|[E for K || E (33b)

The unit vector (26a) had lead

sin2e £

€415-1 7

o€+

[23b]

may be at first regarded as finite. We therefore write (ds/dt), Eq. (25),

and (d;/ds), Eq. (26), as follows:

ds)
dt./,
2 7—-; ) Lo ~ T ~ ~ - W - - 2
) € € € € - € c
W o - 2cos€ /o 2 +1 -1 o+ T o0,
= Lo + = -
+ Zkt( e 2 . \/ (1L+z<) + T2 2 Icose| !l :Tk%
™ o R o 0 o R i
(34a)
/1 /ig cosB fﬁ\ B o \2 g i
£ 2 = ~ =2 &
N 1+ z< sin6 k + in0 cosf I} \ " k;, 5
' Q‘E\ = —— = e —— (34b)
. ds ¢ \2 592

This yields the limiting values

(ds/d1), v
_ 2 €€ 1 = €., c
limn ———— =F lin2k, & *2 FL _o* Ly 52 (350)
N~ 7.2 e Ny 2 2 W
8+0 e € /e 0 € - )
o - o] (o]

-+0

o ey
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-~ o\ ~ Al ~
-5 . -> > -> ->
lim S o . g4y keos® B _ o, g, (BAdO - B, gy, dK g
60 dsvt sinbd de de
€ & 0
o -

In Eq. (35a) the limit of k, is finite, because k+ vanishes for e, 0

i

only if 6 # 0 and k_ remains finite anyway at go 0. Analogous to Eq.

(29) we write

’.'\ . \
dt ds [ 505 drt
dt = ds — = ! -/ 36
ds /€ E [e? ] 2 4/ 30
o-""0 )

and chose the intervals ds proportional to \/éoé_/eg. Then each of the two
factors in Eq. (36) remains finite in the vicinity of Eoé- =0 for 6 =0.

To obtain more information about lim(d;/ds), Eq. (35b), we

substitute
;>\ N ~ A\ N
dk - _ _l_ “ oF _ I(* i(* . oF ) {20]
dr k > >,
~or ar~

2

e - s > \\
PRSI S B I
e t N or or

The factor 1im(dtr/kde) can be replaced because d;/ds is a unit vector:

AR '//\ 3\, N

; 2§32 S

lim E§ = lim L. = lim - N -
s 7 ~ \

. 70 ot-"0 /BF 3F /3 8F>2 oS0 (B &N 3
€ ¢ »0 = . = —(B Pt - >
o - > -> > ar

ar 9T or

(37)
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Thus 1im d;/ds is perpendicular to E and in th¢ plane through the vectors
E and OF/5r.

The sign of the root in Eq. (37) is still undertermined. To decide
whether it changes or not during the transition 8 = 0 < EOE_ one has to
distinguish the cases ‘Eo - 0 and E_ + 0. A change would mean total reflec-
tion.

For €~ 0 we can obtain the limiting value (35b) for d;/ds
also from Eq. (31b), with 6 - Q. Hence d;/ds does not show a peculiar
behavior in this case and we cannot await total reflection.

For go -> 0‘ we obtain the same limiting values for (d—l.:/ds)+ from
Eq. (35b) and from Eq. (30). The latter holds, however, for a case of total
reflection and thus we have total reflection also in Eq. (37) for the +-mode.
Since k+ remains finite for 6 = 0 we have, according to Eq. (20), no
sudden change of the direction §~ through 180o in this case. This causes a

cusp in the ray path [Poeverlein 1949, 1950].

1f
Vo
lim ¢ = 1i 2cosf eoE- = ®
v6+0 o J6+0 sin?@ E+1E_1 - EOE+
€ e >0 e e 0

the results depend on the sequence of the limiting processes. The limit of
the cusps for the +-mode would be a kink. But the two modes are strongly

coupled in this particular case and a special discussion-is needed [Poeverlein

1949, 1950].
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7. The group speed in a gyrotropic incompressible plasma
The expression 0F/dw for the reciprocal group speed, Eq. (22a),

is rather involved, since the eigenvalues

¥ 2 2
£ . : N B
S ch/w . 2 - ic ¢ _ 9c
- = 1~ with w = y W =
. Ne Bc
€ cw+iv + sw € m mc ve u
o c Be 0o cC co oo
[3]

in the coefficients (5) of the dispersion equation

2 N
F = k% - (ci> k2B +<-:—> cC =0 [2]
o] (o]

depend on w in a somewhat complicated manner. It is advantageous. to

write

2
SF - 2 _JwtF 2F = 2 (f - BF) (38)
ow w duw? w w
with the quadratic polynomial in k?
2 A"
£ = kMa - (—-‘*—’-) k2 + (2 ¢ (38a)
c c
o o
having the (dimensionless) coefficients
_ ow?A 1 3uw'B 1. 3wSc
a7 T b= 0T a2 € = F Tw?
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The (finite) factor R 1is arbitrary because F = 0.

With the eigenvalues

S2X N
wee_ >
3 ' -2
o z == = }  of the temsor o =
dw? e, du?

,
R g
wl

(39)

we can write the coefficients a, b, ¢, Eq. (38b), using the expressions

(5) for A, B, C:

= 2
= + - )
a o, (ao a+) cos<®
v ~ v
€ >
{ + o 2 =
= — + —a +
b \90 € € +/ (1 + cos®6) <;+1
o o o
£,.¢ - £ € ¢ &
+1° - - o +1
c = ao B et | + a+l o -1 + a_l -_
2 €2 g2
(o] (o] o
. . . , . . 1
The eigenvalues o and their linear combination a =y

easily be calcuated with Eq. (3), yielding

Nc </ . vc
i ——-?
W

(1 + i ——'+ g ——
w

o. = 1 -‘%

(40)

(41a)
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For the determination of the group travel time we have with Egs.

(22a) (38)

dt = -=dt SF = =ds dt
ds

2
w w

(f - BF)

with dt/ds given by Eq. (25), the polynomials f and F given by
Egs. (38a,b) (40) (4la,b) and (2) (3) (5). The factor B 1is arbitrary

and may be chosen as zero.
8. The second Hamilton equation in curvilinear coordinates

Qur last task is the calculation of the spatial derivative BF/B?

in the second Hamilton equation

dk 3F
E = —(—\ . [1l4a]

For this partial differentiation the vector

k= k“Ev = kv§“ (summation over repeated suffixes) (42)

has to be kept constant. In cartesian coordinates with constant basis
- >V AV
vectors g, = 8 this means constant components k = kv' In general

curvilinear coordinates, however, the condition is the vanishing of

-

dk = d(kvgv) = dk"Ev + k"d’g’v = dk"gv + kVdr « g" [vu,Al I% (43)
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[Fues 1957] with the C hristoffel symbol of first kind

15f38uk 38, LN
[vusal = 574 + - . (43a)
z “ax” ax¥ BXA/
Therefore we have to write
AV AV

;9 ok \ 3 9 ok >

CEY = Y+ () - (i%E) + (=) &

-} g AN} ARV N 9T > Bkv 3r 4 v \NOTr

k k k k k

/g V
dk - - >\
= ) g, = - kKg" [vu,al ",
N Br'ﬁ
hence
N / \ .
o [ ) gt £ (44)
- > >
or z Nar 1V ok

Substituting dﬁ/dT from Eq. (43) into the left-hand side of the second
Hamilton equation (1l4a) and Eq. (44) into its right-hand side we obtain

with dz/dt = aF/3k (léa)

AV .

oF . oF Voo >
A8 B gt = -0 Lot
ar 9k 3T v 3k
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ngA g

VU
[\)U,K] - [\)AQU] = u - )\ [433]
9x ax
we have finally
v . /98 38 3\
dk = > _ 3F aF v vy VA Y A
“ac 8 = i, t TcokegiTm - T 8. (45)
or ﬁv ok DS X~ -

3F _ >\ _OF 3E _ U 3F

= , = ]
3T 3 ok k!
> 2k _ 6K >X I S Ak
g, ‘8 v 8 g

for the multiplication of Eq. (45) with EK, vielding [Haselgrove 1955]

e | kA _3F . _3F v w8y By g
dt ax’ kL. e ax"

If the curvilinear coordinates are orthogonal we can transform the

. Ko, .
contravariant components k  into the "physical components"

k = gKkK with 8, = /é;; = l//gKK (no summation)

(k)

which has been done by Haselgrove [1955].

The equation
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> :,r’ A
.51_15. = __1. bﬂ _izfz EF_ [20]
dt k [+ > \ -+ !

—ar‘E dr /-

o~

. (] ] . 3 - ry g
is very involved in curvilinear coordinates, because the condition of k
being a unit vector complicates seriously all expressions, even for ortho-

gonal coordinates.
9. Concluding remarks

In our deduction of Hamilton's equations we have intentionally
aveided as starting point an integrai principle such as Fermat's principle,
since the form of its integrand L (the '"Lagrangean') and its integration
variable dt cannot be deduced from physical assumétions, but must be
justified a posteriori. On the other hand, from Hamilton's equations (lé4a, b)

the following integral principle can be derived [Rawer-Suchy 1966b]:

>

r,t
8 J at L(K, w; ¥, t) =0 with 5¥0=5t0=0=6¥= St

.)
ro’to
" with
> \
-
diL = dr (—a—f— ck o+ ﬁu) = dt(%-ﬁ—w’.
ok ow

For constant w this yields Fermat's principle

>
r

8 Jd?-ﬁ=o
—)
Tr

o
The validity of Hamilton's equations is only restricted by the
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applicability of geometric optics. for the problem under consideration and
the weakness of absorption., To omit the latter restriction some proposals
have been made [Brandstatter 1963; Allis, Buchsbaum, Bers 1963] but they
seem to be controversial [Furutsu 1952].

If geometric optics fails to provide a reasonable approximation
full wave optics has to be employed. Among anisotropic media only "Stratified"
media have hitherto been treated thoroughly (a survey is given by Rawer and
Suchy [1966¢]). On the other hand, for these stratified anisotropic media
equations for ray tracing and group speed have been deduced using the method
of stationary phase [Booker 1939; Millington 1951)]. They can be shown to be
special cases of Hamilton's equations [Rawer -~ Suchy 1966d].

The full strength of Hamilton's equations becomes evident in
applications to non-stratified anisotropic media, e.g. the magnetosphere and
also the ionosphere with large local density irregularities. For the latter
numerical computations of group paths and travel times with Hamilton's
equations.are now being performed at the Institute for Telecommunication
Sciences and Aeronomy, Environmental Science Services Administration, Boulder,

Colorado [Paul, Smith and Wright 1965].
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